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ON AEROACOUSTICS OF A STAGNATION FLOW NEAR A RIGID WALL

ALEX POVITSKY _

Abstract. We consider propagation of disturbances in a non-uniform mean flow by high-order numerical

simulation. Monopole and dipole acoustic, vortical and entropy pulses are embedded in an incompressible

stagnation flow, which is taken as a prototype of a non-uniform low Mach number mean flow near a rigid

wall at high angle of attack.

Numerical results are discussed in terms of baroclinic generation of disturbance vorticity that appear to

be a key process in energy transfer between a non-uniform mean flow and a propagating disturbance. These

phenomena lead to amplification of sound waves originated from an acoustic pulse. Vorticity generation

governs wave radiation of a near-wall entropy pulse and makes the radiated waves similar to those from a

vortical dipole. Interaction of initial pulse vorticity with generated vorticity leads to various radiated wave

patterns discussed here.

Key words, aeroacoustics of non-uniform flows, stagnation flow, wave amplification, vortical flows,

monopole and dipole sources, high-order numerical simulation

Subject classification. Fluid Mechanics, Applied Mathematics

1. Introduction. Many practical problems in aeroacoustics that involve noise generation and propa-

gation are actually problems of propagation of disturbances in a non-uniform mean flow. In this study we

simulate numerically' propagation of acoustic, vortical and entropy dipole and monopole pulses in a non-

uniform incompressible mean flow and reflection of these disturbances by a solid wall. Stagnation flow is a

special case of mean flow that mimics many practical problems in aeroacoustics, such as noise from a leading

edge of an airfoil or a turbine blade, jet impingement noise in STOL/VTOL aircraft concept and engine

noise.

Recent large-scale direct or acoustic analog), simulations for aeroacoustics of bodies suggested that the

presence of strong mean flow gradients makes it extremely difficult to identify, acoustic waves [12]. Slimon

et al. [15] considered aeroacoustics of a flow past a circular cylinder with low Mach number and observed .

poor coincidence of their numerical computations with experimental data near the cylinder axis. Authors

[15] used a CAA scheme called expansion about incompressible flow (EIF) developed by Hardin and Pope

[5]. This approach splits an incompressible flow problem and a perturbation problem and does not allow the

influence of the perturbation problem on the mean flow.

Strong amplification of noise by impingement of a jet upon a fiat rigid bound was studied experimentally

by Olsen et al. [14],,Soderman [16] and Norus [13].

On the other hand, available numerical studies about a single disturbance propagation are devoted to

propagation in a static environment, in uniform flows and in unidirectional sheared mean flows using either

Lighthill acoustic analogy approach [11], [3] or numerical solution of Euler equations for given pulses [6], [17],

[8]. For essentially non-uniform flows, Atassi and Grzedzinski [1] suggest to split the disturbance velocity

into three components that significantly simplifies computations and reduces the governing equations to a
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single Poisson equation. This study is applied to 3-D stagnation flows around bluff bodies with isolated

stagnation points and represents an extention of M. Goldstein [4] approach to streaming motions with small

unsteady disturbances. However, according to [1] this approach is not applicable to 2-D flows, having a

stagnation line along the body' surface.

Thus, detailed numerical investigation of a disturbance propagating in a non-uniform mean flow near

stagnation point is needed. To obtain governing equations, the Euler equations are written in terms of the

sum of known flowfield for tile stagnation flow and unknown disturbance variables. These equations are solved

numerically by high-order compact discretisation on a structured grid in the space-time domain. We study

propagation of single pulses as it represents a building block for propagation of more complex disturbances in

turbulent flows. Geometrically a stagnation flow is a relatively small spatial extent embedded in a uniform

flow or in a static ambient medium; therefore, the data obtained is useful for far-field computations of

radiated sound by integral methods.

The stagnation flow stretches acoustic, vorticity and density pulses and affects the intensity', shape,

direction of propagation and profile of propagating waves. Near-field wave solutions in the stagnation flow

appear to be very different from those obtained in a uniform flow or in a static environment. The goal of

this study, is to gain theoretical and computational insight into the governing physical mechanisms.

Tile article contains five sections. In the second section, the linearized Euler equations about the steady,

mean flow are obtained, the numerical procedure and artificial boundary conditions are described. In Section

3, results on the propagation of acoustic pulses in stagnation flow are presented. The obtained reflected

waves are discussed in comparison with their counterparts for the static ambient medium. We show that

baroclinicgeneration of vorticity controls the energy, transfer between the mean stagnation flow and acoustic

disturbance. In Section 4, t,he numerical results for vorticity monopole and dipole pulses are presented and a

different scenario of near-wall vortex stretching and corresponding emission of acoustic waves is considered.

Production of non-symmetric waves due to propagation and reflection of combined vorticity./entropy pulses

is modeled. Section 5 contains results about propagation of entropy pulses in stagnation mean flow. An

analogy, between generation of waves originated from an entropy monopole pulse and from a vortical dipole

is drawn in this section.

2. Governing equations and numerical procedure.

2.1. Euler equations for small disturbances. Tile two-dimensional unsteady Euler equations of

ideal gas dynamics describe an inviscid flow in conservative form and can be written as:

(1)

The vectors in equation (1) are

(2) q =

qt + f_ +gu = O.

pu , f= pu2 + p , g= puv
pv put' pv 2 + p

e (e +p)u (e +p)v

where p is density, p is static pressure, (u, v) is velocity in Cartesian coordinates (x, y), and e is the total

energy, related to the other variables by an equation of state, which, for a perfect gas, is

(3) e = (._,_ 1) + -_p(u" + v2)



whereT= 1.4is theratioof specificheats.
Considervelocitiesassumsof steadymeanflowandacousticdisturbances

(4) u = U + ut, v = V + vt, p = P +pt, p 1 + pt.

We assume that the normalized speed of sound c = _ = 1 and, therefore, pressure and density

obey the same equation. For simplicity, we omit ts in the following equations in this subsection. The Euler

equations, presented in terms of mean flow variables and their disturbances, are given by

, O(U + u) O(P + p)
(1 + p) -0-[ -- Ox

o(v + v) o(p + p)
(1 +,) b7 - 0y

0(1 + p) 0((1 + p)(U

(5)

Ot Ox

(U + u)(1 + p) O(U + u) (I" + v)(1 + p) 0(_0_r4-
U)

Ox

(o(_" + v)
(U+u)(l+p) -Ox - -(V+v)(l+p)O(IoyV ,

-+ )

+ u)) 0((1 + p)(I" + v))

Oy " "

If a mean flow is described by the irrotational flow model in the region between two straight zero-flux

boundaries intersecting at an angle _r/n [2], the stream-function field is given by

(6) ¢ = At"sin(nO),

where (r, 0) are polar coordinates. Thus, this study can be easily expanded to an,,, angle of attack.

In the special case n = 2 (stagnation flow) the velocity field is described by

(7) U(x, y) = -2Ax, l'(x, y) = 2Ay, A > O.

For stagnation mean flow with a normalization leading to 2A = 1, the linearized version of system (5) is

obtained by neglecting second-order products of fluctuation quantities (such as uv, pu, v 2, and u 2) :

(s)

OU

Ot

Ov

Ot

Op

Ot

OP + x _xx + u - OuOx y _ - xp

Op Ov Ov
Oy VN+x_ v-yp,

Ou Ov Op Op

Ox Oy + X-_x - Y _y"

Non-linear aeroacoustic equations for the stagnation mean flow are given by:

Ou ( Op Ou Ou Ou Ou )0--[= -_ +x_x + _-y N-xp+_(xp-u-p'_)+pu-_(yp+v+O_:) I(1+p)

o,_ ( op Ov OVo__7= _ _ _°vOv )(9) -_-_ - y-_. + X_x - V - yp + -_x (Xp - u - pu) - pv - -_y (yp + v + pv) /(l+p)

Op _ Ou Ov Op Op Opu Opt,
ot Ox oy

2.2. Numerical procedure. The spatial derivatives in Eqs. (8) and (9) are approximated using

compact finite difference schemes [10]:

C' ' i _' , = a U - _(t,+2-U,-2),(10) [I ri_.2 + aUi_ 1 + U i + a_i+ 1 + [1Ui+ 2 _( 'i+l U/-1) + b ,

where U' is the unknown derivative, Ax is the grid step and Ui-2, ..., Ui+2 denote values of variable U at

grid nodes i - 2, ...,i + 2. In this study the classical Pad6 scheme (a = 0.25, a = 1.5 and fl = b = 0) with a



tridiagonalmatrixfortherightandleftsidesof (10)isused.One-sidenear-boundaryspatialdiscretizations
havetheform

, 1
(11) U1 +c_bU 2 = _ Z abiUi,

i=l,..,Nb

where Nb is the size of the near-boundary stencil and abi are discretized coefficients. With this choice the

boundary schemes can be used with a tridiagonal interior scheme without increasing the bandwidth [10].

Eqs. (8) and (9) are discretized in time with an explicit fourth-order Runge-Kutta (RK) scheme. The

solution is advanced from time level n to time level n + 1 in five sub-stages using a low-storage RK scheme

proposed by Williamson [18] and implemented by Wilson et al. [19]:

OCTM OU M OU M aM HM_I,
(12) H M = Sx --_-x + S, --_--y" + S: _ +

UM+ 1 = U M + bM+l _tHM,

where M is the particular stage number; and the coefficients a M and bM depend upon the order of the RK

scheme.

To provide grid refinement study, the computational domain 9_ = [0 < x < 1.2] × [-1.2 < y < 1.2]

is covered with 80 × 80,120 × 120 and 160 × 160 uniform numerical grids. Centerline pressure profiles for

these grids at time moment t = 0.5 are shown in Figure 1. The pressure profile for coarse grid 80 × 80 has

small oscillations ahead the wave front and numerical local maximum near the stagnation point. Finer grid

computations are free from these drawbacks and are practically identical for 120 × 120 and 160 × 160 grids;

therefore, the 120 × 120 uniform numerical grid is used in this study. Time step is computed by &t = C&x,

where the Courant number (C) is taken equal to 0.02.

At all boundaries but the flat plate, characteristic outflow boundary conditions [7] are applied. The mean

flow is supersonic at the outflow boundaries; therefore, all numerical near-boundary disturbances should be

moved out. Spatial discretizations at the outflow boundaries are computed by (11). For propagation of

a pulse in the static environment, perfect matching layer (PML) [8] with thickness of ten grid nodes is

implemented to suppress disturbances originated from boundary conditions.

At the flat plate (x = 0) reflection boundary conditions Cb = ¢b-1 are used for pressure and velocity .

component v. For these variables, zero boundary conditions for spatial derivatives ¢_ = 0 are used instead

of approximation (11). Normal velocity u is equal to zero at this boundary and approximation (11) is

implemented for its spatial derivative.

The computational procedure for this numerical method is as follows:

1. Compute the right-hand side of equations (10) using values of the governing variable U from the

previous time step.

2. Compute the spatial derivatives solving tridiagonal systems in x and y spatial directions.

3. Compute the right-hand side of equations (8) or (9) using the spatial derivatives computed on Step

2 and update governing variables by Runge-Kutta scheme.

4. Compute boundary values of governing variables using characteristic and reflection boundary con-

ditions.

5. Repeat computational steps 1-4 for all stages of Runge-Kutta scheme.

6. Repeat computational steps 1-5 for all time steps.

Numerical computations show that non-linear equations (9) give the same results as linearized equations

(8).

J
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3. Propagation of acoustic pulses. Reflection and propagation of an acoustic pulse in the stagnation

mean flow (case A) in comparison with its propagation in the static ambient conditions in presence of wall

(case B) are studied in this section. We solve numerically the system (9) by algorithm described in tile

previous section, hfitial conditions describing this pulse are widely used in test aeroacoustic computations

[6]:

(131 . =o=cexp 2÷ 1
L a J

where e = 0.01,a = ln(2)/9, d = 60 is the normalization coefficient, and the pulse is centered at (xc =

0.25, Yc = 0).

In Figure 2 pressure fields are presented side by side for cases A (left column) and B (right column) at

the same time moments. In case A, the mean flow stretches the pulse in the y direction and compresses

it in the x direction. In both cases, a reflected waves is formed; however, in case A the wave propagation

upstream of the mean flow leads to formation of flat waves (Figure 2b,c). Maximum pressure is larger in

case A than that in case B except the earlier time moment t = .33 (see Legend in Figure 2). Acoustic pulse

propagates with the speed of sound relative to mean flow; therefore, propagation speed in steady frame (x, y)

in case A is slower than that in case B.

Centerline profiles of pressure for the cases A and B at time moments t = 0.165, 0.33, 0.495 and 0.66

are shown in Figure 3. The acoustic pressure amplitude is almost constant in time in case A (Figure 3a),

whereas in case B (Figure 3b) it decreases with the distance from the origin. For example, at t = 0.66 (curve

4 in Figure 3) the wave amplitude in case A is approximately two times larger than that in case B.

Thus, our aim is to understand the transfer of energy between the mean stagnation flow and a distur-

bance, that causes amplification of the pulse in case A as opposed to case B.

Let us rewrite Eq. (2) in terms of vorticity transport [7], [20]:

D w 1 1

(14) = w,) + y(v0 × vp)

(15) DO - pVu,
Dt

where P, u = (u, v) and P satisfy Eq. (4) and vorticity o., = wt + ft. In the 2-D case w = (0, 0,,z), the term

w • Vu = 0, and Eq. (14) becomes

Dw D O 1
(16) p-_ + _'_--/= p(Vp × Vp).

The right-hand side of above Eq. is transformed as follows:

(17) l(vp x Vp) = (1 - pt)Vpt × (_'P + _Tpt) = Vpt × VP.
P

It should be noted, that 1/(1 + pt) = 1- pt+ O(pt'_), the Inean flow is irrotational (f_ = 0) and incompressible

(VU = 0), and _O I × Vpt = 0 for acoustic disturbances. We neglect the second-order terms wtpt, utpt in the

left-hand side of Eq. (14) and in Eq. (15), to obtain

(18) Dwt
Dt - UOl × UP

(19) tD--P--= -VuP.
Dt



Two fluid mechanics phenomena govern ttle process of pulse propagation: (i) the baroclinic generation of

acoustic vorticity due to the interaction of mean field pressure gradient with density gradient, of aeroacoustic

disturbance; and (ii) the volume expansion of tile disturbance. Note, that the former phenomenon exist only

in a non-uniform flow, where the pressure gradient is not equal to zero, whereas the latter one is characteristic

for any mean flow including static ambient conditions.

Equation of conservation of an acoustic energy density for irrotational and incompressible mean flow

and adiabatic acoustic disturbance is given by [3]:

(20) OE0---t-+ VI = ul. (U x wl),

where E = pt2/2 +ut2/2 + ptut. U is the acoustic energy density and I = (pt + ut. U)(ut + ptU) is the

acoustic energy flux. For an irrotational source-fi'ee disturbance field, acoustic energ3' density is conserved,

i.e., the net. flux of acoustic energy across any surface is equal to time rate of change of energy within volume

that this surface encloses [3]. On the contrary, for rotational disturbance field the acoustic energy is affected

by the baroclinic generation of disturbance vorticity. In case of 2-D stagnation mean flow, the right side of

Eq. (20) is expressed by:

(21) ut. (U x wt) = yu_' + xv_.

Thus, the role of vorticity as an agent in energy transfer between the mean flow and disturbance is shown.

Fields of the baroclinic vorticity generation Vpt × VP and disturbance energy generation (21) are shown in

Figure 4. Tlle latter term is negative before the pulse hits the rigid wall (t = 0.17, Figure 4a) and positive

when acoustic waves propagate opposite to the direction of pressure gradient (t = 0.66, Figure 4b). Acoustic

waves consume the mean flow energy, while the wave propagates opposite to the direction of mean flow

pressure gradient.

The vorticity generation term is negligible near the centerline, because vectors Vpt and VP are almost

collinear and their vector product is close to zero. The zero zone is bigger for the energy generation field

than that for the vorticity generation (see Figure 4b): in addition to small vorticity, the first term in (21) is

small as y is small and the second term is small as v is close to zero near symmetry line. Although vorticity

is convected with the flow, generation of vorticity and, then, generation or decay of acoustic energ3" remain

local phenomena.

To complete this section, we consider an acoustic dipole in the stagnation mean flow. hfitial conditions

correspond to a pair of positive and negative pulses (13) centered at (0.25,0.1) and (0.25,-0.1). Pressure

fields at t = 0.33 and t = 0.66 are presented in Figure 5. While waves propagate upstream of the mean flow,

they become flat and their intensity behaves similar to that for the monopole source. The difference between

dipole and monopole sources is that cancellation of waves for the dipole source leads to zero wave intensity

near the centerline and formation of pressure quadrupoles.

4. Vorticity pulses. While an acoustic pulse travels with the speed of sound relative to a mean flow,

the vorticity and entropy pulses convect with the mean flow. Therefore, in case B these pulses do not

contribute to aeroacoustic noise and results are shown only in case A. Initial velocity field for considered

vorticity pulse was first proposed by G. I. Taylor, cited in [9], and used by [6]:

u=(Y-Yc)_"exp[-d2(x-Xc)_+-(Y-Yc)2] 'a

(22) v = -(x- x_)e_'exp [-d2(X- X¢)2 + (Y- Y_)2] 'a



wheree,, = 0.04, xc = 0.25, yc = 0.

Vorticity and pressure field are shown in Figure 6. Initial vortex is strongly stretched by the stagnation

flow and four pressure spots of alternating sign amplitude (quadrupole) are clearly seen in Figure 6a at

t = .42. These spots elongate and become pressure waves that propagate outward (Figure 6b, t = .62).

These waves remain invisible for an observer at the centerline; waves eventually become flat as we already

observed for acoustic waves (Figure 6c, t = .82). According to Lighthill [11], the quadrupole radiation may

have a much weaker far field in relation to its near field than even dipole radiation has; however, in cases

without significant dipole and monopole sources the quadrupole may produce a significant noise.

In spite of the continuous stretching of the vortex, only waves emanating from the first quadrupole

pressure spot were. observed. To explore reasons for wave radiation, the stagnation mean flow has been

switched off at t = 0.5 and, for t > 0.5, computations correspond to the static ambient conditions with

already stretched vortex located near the wall. This situation holds when the vortex reaches the outer

boundary of stagnation flow. The pressure fields at t = 0.82 and t = 1.02 are shown in Figure 7. The

quadrupole wave source starts to form immediately after abrupt stop of vortex stretching (Figure 7a) and

additional four waves radiate soon (Figure 7b). The similar phenomenon is observed for different switch-off

time moments. These waves are weaker than that propagated in the stagnation flow as in ttle former case

waves do not receive energy from the ambiance.

Acoustic radiation from a vorticity dipole in the stagnation flow is studied and results are shown in Figure

8. Initial conditions correspond to two counter-rotating vortices with velocity distribution (22) centered at

(0.25, 0.1) and (0.25,-0.1). Each of the vortices is stretched along the wall outward the stagnation point

and produces a quadrupole. Waves of the same sign merge near the centerline, and propagate upstream of

the stagnation flow. Each of these two waves is surrounded by two waves of opposite sign. Therefore, the

angular distribution of absolute value of wave amplitude has three maximums corresponding to a central

wave and two peripheral waves.

5. Entropy pulses. Initial conditions for an entropy pulse are given by Eq.(13) for density and are

equal to zero for pressure and velocities. In this case, an additional equation for pressure, which is equal

to equation for density, is added to governing system (9) and solved numerically together with the other

equations (see Section 2).

Results of computations are shown in Figure 9. Unlike the previously studied acoustic pulse, the entropy

pulse does not spread and the area of density gradient remains localized. Therefore, in this case deposition

of baroclinic vorticity produces a counter-rotating vortex pair (Figure 9b). Thus, the shape of obtained

pressure waves for entropy monopole is expected to be similar to that for the vortical dipole. Actually,

the second sound wave in Figure 9a is similar to sound waves in Figure 8b. In both cases, the symmetric

centerline wave is surrounded by two symmetric waves of opposite sign. The diffe.rence between waves in

these figures is due to tile presence of initial density pulse superimposed with the induced vortex pair in the

case of entropy pulse.

Combination of entropy and vortical pulses is studied as an example of interaction between initial

vorticity and induced vortex pair. Initial conditions correspond to straightforward superposition of entropy

and vorticity monopole pulses centered at (0.25, 0). Radiation of opposite signed waves by a vorticity pulse

interferes with radiation of ttle centerline symmetric wave by an entropy pulse (see Figure 10). Two cases

with different relative strengths of entropy and vortical pulses are considered: a) pulse amplitudes are tlle

same as in Eqs. (13, 22) (Figure 10a); b) initial amplitude of the entropy pulse is reduced twice (Figure

10b). In the former case, the reflected wave pattern deviates somewhat from the symmetric picture of tile



pureentropypulsewavepattern(compareFigures10aand9a).In the'lattercasealternating-signspatiMly
shiftedpulsesareclearly seen (compare Figures 10b and 6b).

6. Conclusions. Physics of propagation of monopole and dipole pulses in a stagnation flow in presence

of solid wall is studied numerically.

It is shown that baroclinic deposition of vorticity due to non-zero vector product of mean pressure gradi-

ent and disturbance density gradient distinguishes disturbance propagation in a non-uniform flow from that

in a uniform flow or in static ambient conditions. Generated vorticity serves as an agent to transfer energs"

between the mean flow and the disturbance. This results in amplification of acoustic waves propagating

against the pressure gradient of the mean flow.

When an entropy monopole pulse propagates in a stagnation flow, the vorticity deposition produces a

vortex pair and therefore, an entropy monopole radiates waves similar to those originated from a vorticity

dipole.

Near-wall stretching of vorticity pulses by stagnation flow lead to radiation from a quadrupole. Numerical

experiments in case of contiguous stretching by stagnation flow show the single generated quadrupole, whereas

additional quadrupole may be generated by vortex freezing.

Obtained angular and planar distribution of wave amplitude may be useful for further far-field compu-

tations of radiated noise in presence of solid walls and non-uniform flows.
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